Strategies for Conducting a Meta-Analysis

Lutfiyya N. Muhammad, PhD, MPH
Assistant Professor
Department of Preventive Medicine
Division of Biostatistics

March 23, 2022
Department of Surgery Research Toolkit Lecture
Outline

• Background on Systematic Review & Meta-Analysis

• Guidance on Meta-Analysis Process

• Data Extraction Process and Tips

• Common Statistical Methods for a Meta-Analysis

• Reporting Results for a Meta-Analysis

• Summary

• Biostatistics Resources at Northwestern University
Background
Systematic Review & Meta-Analysis

• Systematic Review – a *reproducible* process that reviews and synthesizes information obtained from a collection of available research studies that answer a specific research question.

• Meta-Analysis – a statistical approach to summarize results from a systematic review.
 – A subset of a systematic review.

• Many systematic reviews include a meta-analysis, but a meta-analysis is not required for a systematic review.
 – Guideline: Synthesis Without Meta-analysis (SWiM).
Meta-Analyses & Systematic Reviews from the Top Publishing Countries, 1995 – 2015

Guidance on Meta-Analysis Process
Guidance on Meta-Analysis Process

• Descriptions of meta-analysis steps can be found through guidelines and tools

• PRISMA- Preferred Reporting Items for Systematic Reviews and Meta-Analyses (Page et al., 2021)

• Tools/Step by Step Guide for biomedical research with/without human participants (Haidich, 2010; Nakagawa, Noble, Senior, & Lagisz, 2017; Tawfik et al., 2019)
Framing Meta-Analysis Research Question/Objective

• Meta-analysis research question and/or objectives should be well-defined and answerable

• It is important that the question and objectives are very specific
 – This helps to ensure that the data from the different studies can be combined

• PICOT - Guidance for developing a research question (Riva, Malik, Burnie, Endicott, & Busse, 2012)
 – Population, Intervention, Comparison, Outcome, and Time

• It may be more plausible to use only Population, Outcome, and Time
 – Observational study without an intervention and no comparison groups

• When selecting the Time, take into consideration if there were any health or scientific guideline changes that could impact the methodology used in studies
Systematic Review and Meta-Analysis: Treatment of Substance Use Disorder in Attention Deficit Hyperactivity Disorder

Dimy Fluyau, MD,¹ Neelambika Revadigar, MD,² Christopher G. Pierre, MEd, RN³

¹Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
²Psychiatry and Behavioral Sciences, Columbia University, New York, New York
³Grady Memorial Hospital Corp, Atlanta, Georgia

Background and Objectives: Treating substance use disorder (SUD) in patients with co-occurring attention deficit hyperactivity disorder (ADHD) and SUD may lower medical, psychiatric, and social complications. We conducted a systematic review with meta-analysis to investigate the clinical benefits of pharmacological interventions to treat SUD in patients with ADHD.

Methods: Articles were searched on Cochrane Central Register of Controlled Trials, PubMed, EBSCO, Google Scholar, Embase, Web of Science, and Ovid MEDLINE from 1971 to 2020. Data for SUD treatment as primary study endpoints and ADHD symptoms management as secondary outcomes were synthesized using random-effects model meta-analysis. Studies (N = 17) were included. The principal measure of effect size was the standardized mean difference (SMD). PROSPERO registration: CRD42020171646.

INTRODUCTION

The presence of attention deficit hyperactivity disorder (ADHD) not only increases vulnerability to substance use disorder (SUD) but also influences the long-term prognosis and treatment of SUD itself. ADHD is a chronic mental disorder that impacts an individual’s biological, psychological, and social aspects. Encountered during childhood, ADHD can also carry onto adulthood.¹ ADHD often co-occurs with other psychiatric disorders and is associated with significant psychosocial complications.² A meta-analysis estimated that the overall prevalence of ADHD in SUD patients was approximately 23%, irrespective of age.
Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis

Awadshesh K. Singh MD1 | Clare L. Gillies PhD2,3 | Ritu Singh MD1 | Akriti Singh MBBS4 | Yogini Chudasama PhD2,3 | Briana Coles MSc2 | Sam Seidu MBChB2,3 | Francesco Zaccardi PhD2,3 | Melanie J. Davies FRCP3 | Kamlesh Khunti FRCGP2,3

1GD Hospital & Diabetes Institute, Kolkata, India
2Leicester Real World Evidence Unit, Leicester Diabetes Centre, Leicester, UK
3National Institute for Health Research (NIHR) Applied Research Collaboration - East Midlands (ARC-EM), Diabetes Research Centre, Leicester General Hospital, University of Leicester, Leicester, UK
4College of Medicine and JNM Hospital, Kalyani, Nadia, West Bengal, India

Abstract
Aim: To estimate the prevalence of both cardiometabolic and other co-morbidities in patients with COVID-19, and to estimate the increased risk of severity of disease and mortality in people with co-morbidities.

Materials and Methods: Medline, Scopus and the World Health Organization website were searched for global research on COVID-19 conducted from January 2019 up to 23 April 2020. Study inclusion was restricted to English language publications, original articles that reported the prevalence of co-morbidities in individuals with COVID-19, and case series including more than 10 patients. Eighteen studies were selected for inclusion. Data were analysed using random effects meta-analysis models.

Inclusion/Exclusion Criteria

• PRISMA checklist states, “Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.” (Page et al., 2021)
 – A meta-analysis of a subset of the collected articles may be appropriate for the research area of interest

• The criteria and plan for grouping the studies should be determined prior extracting data during the systematic review process
 – Screen articles to assist with determining the inclusion and exclusion criteria (Mikolajewicz & Komarova, 2019)
 – Check registered protocols of systematic reviews with a meta-analysis
 – Search the Cochrane Database of Systematic Reviews (CDSR)

• There should be separate set of inclusion/exclusion criteria for each meta-analysis objective
Protocol Registration for a Systematic Review with Meta-Analysis

• It is not required to register the protocol for a systematic review with a meta-analysis

• Registration of the study must occur at the inception/protocol stage of the project

• PROSPERO is a common database for registering a systematic review with a meta-analysis protocol (Tawfik et al., 2020)
 – PROSPERO - International Prospective Register of Systematic Reviews
 – For systematic reviews of human and animal studies

• Can search through PROSPERO for overlapping studies
 – Help with deciding to conduct a systematic review/meta-analysis
 – Help with determining inclusion/exclusion criteria
PROSPERO Covid-19 filters

Click any of the keywords below to search PROSPERO for Covid-19 registrations or click here to see all Covid-19 human studies or here to see all Covid-19 animal studies.

Click to hide the Covid-19 filters and go back to standard PROSPERO searching

<table>
<thead>
<tr>
<th>Tag</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese medicine</td>
<td>196</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>396</td>
</tr>
<tr>
<td>Epidemiological</td>
<td>1292</td>
</tr>
<tr>
<td>Genetics</td>
<td>46</td>
</tr>
<tr>
<td>Health impacts</td>
<td>1708</td>
</tr>
<tr>
<td>Immunity</td>
<td>165</td>
</tr>
<tr>
<td>Long COVID</td>
<td>183</td>
</tr>
<tr>
<td>Mental health</td>
<td>755</td>
</tr>
<tr>
<td>Other</td>
<td>416</td>
</tr>
<tr>
<td>PPE</td>
<td>89</td>
</tr>
<tr>
<td>Prognosis</td>
<td>769</td>
</tr>
<tr>
<td>Public health</td>
<td>617</td>
</tr>
<tr>
<td>Intervention</td>
<td>193</td>
</tr>
<tr>
<td>Service delivery</td>
<td>298</td>
</tr>
<tr>
<td>Transmission</td>
<td>263</td>
</tr>
<tr>
<td>Treatments</td>
<td>1075</td>
</tr>
<tr>
<td>Vaccines</td>
<td>408</td>
</tr>
</tbody>
</table>

PROSPERO. National Institute of for Health Research.
Tips for a Comprehensive Database Search

• Decide which dissemination sources are included in your meta-analysis

• Multiple databases should be used to conduct the search
 – Medline, Scopus, Web of Science, etc.

• A comprehensive search includes identifying relevant studies through popular and lesser-known databases

• Consult with an information specialist or librarian while conducting the search
 – They can aid with specific keywords and strings for database searches

• Make sure studies are selected for the appropriate timeframe

• Detailed documentation of the search methodology is required to ensure reproducibility
PRISMA Flow Diagram Creation

- Create your own without a template via word document
- Word document templates via PRISMA website
- PRISMA R package and ShinyApp (PRISMA2020)
PRISMA - Literature Search for Studies

PRISMA 2020 Checklist

<table>
<thead>
<tr>
<th>Section and Topic</th>
<th>Item #</th>
<th>Checklist item</th>
<th>Location where item is reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>1</td>
<td>Identify the report as a systematic review.</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
<td>See the PRISMA 2020 for Abstracts checklist.</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>3</td>
<td>Describe the rationale for the review in the context of existing knowledge.</td>
<td></td>
</tr>
<tr>
<td>Objectives</td>
<td>4</td>
<td>Provide an explicit statement of the objective(s) or question(s) the review addresses.</td>
<td></td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>5</td>
<td>Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.</td>
<td></td>
</tr>
<tr>
<td>Information sources</td>
<td>6</td>
<td>Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.</td>
<td></td>
</tr>
<tr>
<td>Search strategy</td>
<td>7</td>
<td>Present the full search strategies for all databases, registers and websites, including any filters and limits used.</td>
<td></td>
</tr>
<tr>
<td>Selection process</td>
<td>8</td>
<td>Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.</td>
<td></td>
</tr>
</tbody>
</table>
Data Extraction Process and Tips
Data Extraction Process

• More than one reviewer should be extracting data
 – Make sure the reviewers are familiar with the inclusion/exclusion criteria and the database for the data extraction

• Assess the quality and validity of each study

• Compare reviewer agreement on the validity of each study
 – Detailed documentation on how disagreements were resolved

• Document any missing information that is related to the meta-analysis objectives

• Report details on any use of data extraction automation/scraping tools
Data Extraction Tips – Database

• Create a database for the data extraction prior to collecting the data
 – Create a test database

• Explore the options for creating a database
 – Excel
 – Google Spreadsheets
 – REDCap
 – Systematic Review Data Repository (SRDR)
 – Covidence
 – DistillerSR
 – Joanna Briggs Institute System for the United Management, Assessment and Review of Information (JBI Sumari)
Data Extraction Tips – Database

• At minimum, your database for data extraction will include:
 – Author Names
 – Year of Publication
 – Inclusion/Exclusion Criteria
 – Sample Size
 • Several ways to report sample size – Randomized, recruited, by group/arm
 • Be consistent throughout the database
 – Type of study
 – Number of intervention groups, if applicable
 – Quantitative data of the effect size
 • Collected in a uniform format
 • Follow-up data has the same follow-up period
 • Timing of the measurement (Baseline or post intervention/medical procedure)
 – Only include data related to your meta-analysis objectives
Data Extraction Tips – Common Effect Sizes

- Quantitative data of the effect size
 - Means (SDs)
 - Risk Ratios (SEs)
 - Odds Ratios (SEs)
 - Risk Difference (SEs)
 - Hazard Ratios (SEs)
 - Proportions
 - Difference of Proportions
 - Correlations
Common Statistical Methods for a Meta-Analysis
Common Statistical Methods for a Meta-Analysis

<table>
<thead>
<tr>
<th>Statistical Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Effect Model</td>
<td>Statistical approach that obtains a weighted average of study estimates. There is an assumption that each study has the same underlying true effect. Larger studies receive a larger weight that smaller studies.</td>
</tr>
<tr>
<td>Random Effects Model</td>
<td>Statistical approach that obtains a weighted average of study estimates that assumes each study has varying underlying true effects. This approach takes into consideration the variability between each study.</td>
</tr>
<tr>
<td>Meta-Regression</td>
<td>Statistical method that determines the association between explanatory variables and effect estimates.</td>
</tr>
<tr>
<td>Subgroup Analysis</td>
<td>A meta-analysis conducted using only a subset of the studies based on a similar characteristic.</td>
</tr>
</tbody>
</table>

Common Statistical Methods for a Meta-Analysis

<table>
<thead>
<tr>
<th>Statistical Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Meta-Analysis</td>
<td>Analysis approach for comparing studies with more than two groups.</td>
</tr>
<tr>
<td>Cochrane’s Q Test</td>
<td>A test that has a null hypothesis that all studies have the same underlying true effect. Rejecting the null hypothesis means that there is evidence of statistical heterogeneity.</td>
</tr>
<tr>
<td>I² Statistic</td>
<td>A measure that captures the degree of heterogeneity among studies that is not due to random chance. I² is reported as a percentage.</td>
</tr>
</tbody>
</table>

Reporting Results for a Meta-Analysis
Reporting Results – Forest Plot

Fixed effect analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Relative Risk (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50</td>
<td>0.30 (0.15, 0.59)</td>
<td>1.87</td>
</tr>
<tr>
<td>II</td>
<td>44</td>
<td>0.33 (0.15, 0.73)</td>
<td>1.35</td>
</tr>
<tr>
<td>III</td>
<td>56</td>
<td>0.55 (0.30, 0.99)</td>
<td>2.41</td>
</tr>
<tr>
<td>IV</td>
<td>23</td>
<td>0.61 (0.20, 1.82)</td>
<td>0.69</td>
</tr>
<tr>
<td>V</td>
<td>88</td>
<td>1.00 (0.73, 1.37)</td>
<td>8.46</td>
</tr>
<tr>
<td>VI</td>
<td>18</td>
<td>1.11 (0.34, 3.58)</td>
<td>0.60</td>
</tr>
<tr>
<td>VII</td>
<td>250</td>
<td>1.43 (1.23, 1.67)</td>
<td>35.60</td>
</tr>
<tr>
<td>VIII</td>
<td>150</td>
<td>1.65 (1.36, 2.01)</td>
<td>21.66</td>
</tr>
<tr>
<td>IX</td>
<td>200</td>
<td>3.32 (2.79, 3.95)</td>
<td>27.35</td>
</tr>
<tr>
<td>Overall (I^2 = 94.0%, P = 0.000)</td>
<td></td>
<td>1.67 (1.52, 1.82)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Random effects analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Relative Risk (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>50</td>
<td>0.30 (0.15, 0.59)</td>
<td>10.59</td>
</tr>
<tr>
<td>II</td>
<td>44</td>
<td>0.33 (0.15, 0.73)</td>
<td>9.69</td>
</tr>
<tr>
<td>III</td>
<td>56</td>
<td>0.55 (0.30, 0.99)</td>
<td>11.19</td>
</tr>
<tr>
<td>IV</td>
<td>23</td>
<td>0.61 (0.20, 1.82)</td>
<td>7.50</td>
</tr>
<tr>
<td>V</td>
<td>88</td>
<td>1.00 (0.73, 1.37)</td>
<td>13.04</td>
</tr>
<tr>
<td>VI</td>
<td>18</td>
<td>1.11 (0.34, 3.58)</td>
<td>7.02</td>
</tr>
<tr>
<td>VII</td>
<td>250</td>
<td>1.43 (1.23, 1.67)</td>
<td>13.73</td>
</tr>
<tr>
<td>VIII</td>
<td>150</td>
<td>1.65 (1.36, 2.01)</td>
<td>13.58</td>
</tr>
<tr>
<td>IX</td>
<td>200</td>
<td>3.32 (2.79, 3.95)</td>
<td>13.66</td>
</tr>
<tr>
<td>Overall (I^2 = 94.0%, P = 0.000)</td>
<td></td>
<td>0.95 (0.61, 1.48)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis.
Summary
Summary

• A meta-analysis is a statistical approach to combine and summarize effects obtained from multiple studies

• The validity of a meta-analysis heavily depends on the validity of the included studies

• Studies included in a meta-analysis must meet the same inclusion and exclusion criteria

• Databases created to extract data collected from studies should be well documented in a uniform way

• There are different statistical methods for a meta-analysis based on if the underlying true effect is the same or not the same across all studies
NU Biostatistics Resources
Biostatistics at NU

• Overview

Division of Biostatistics (Chief: Denise Scholtens), Department of Preventive Medicine (Chair: Donald Lloyd-Jones)
<table>
<thead>
<tr>
<th>Biostatistics Centers and Cores</th>
<th>Overview</th>
</tr>
</thead>
</table>
| **Biostatistics Collaboration Center (BCC)** | - Supports **non-cancer** research at NU
- Initial 1-2 hour consultation subsidized by FSM Research Office
- Grant, Hourly
- https://www.feinberg.northwestern.edu/sites/bcc/ |
| **Quantitative Data Sciences Core (QDSC)** | - Supports **cancer-related** research at NU
- Free to Lurie Cancer Center (LCC) members
- Grant
- https://www.cancer.northwestern.edu/research/shared-resources/quantitative-data-sciences.html |
| **Northwestern University Data Analysis and Coordinating Center (NUDACC)** | - Prospective, large **multicenter research**
- Comprehensive support (e.g., clinical monitoring, data analysis, project management)
- Grant
- https://www.feinberg.northwestern.edu/sites/nudacc/ |
References

References

PRISMA2020: R package and ShinyApp for producing PRISMA 2020 compliant flow diagrams (Version 0.0.2) [computer program]. Zenodo; 2021.

