Microglia depletion followed by repopulation attenuates cytotoxic T-cell infiltration into the aged brain after traumatic brain injury όλόγος καὶ πλήρης ἀλη. χάριτος Θείας

M Northwestern Medicine[®] Feinberg School of Medicine

Traumatic brain injury (TBI) afflicts over 69 million people every year. Patients over 65 years of age experience increased mortality and greater long-term neurocognitive morbidity compared to younger adults. Our lab has recently shown that age introduces an uninvited guest in the brains – the T cell. Infiltrating T cells can interact with microglia, the gatekeepers in the central nervous system and the main showed is eases. We previously published that aged mouse brains showed significant increases in T cells two months post-TBI. These T cells were largely CD8+T effector memory (EM) cells. Microglia are thought to play a role in recruitment of these inflammatory cells making the interplay between microglia and the peripheral immune system in TBI. crucial for the development of new treatments and improved patient outcomes.

We hypothesized that microglia repopulation after TBI would attenuate accumulation of cytotoxic CD8+ T-cells in the injured brain in aged mice post-TBI and improve neurocognitive outcomes.

survival post-TBI

Veronica Villanueva¹, Kacie P Ford¹, Hyebin Han^{1,2}, Zhangying Jennie Chen^{1,2}, Mecca Islam¹, and Steven J Schwulst¹ ¹Department of Surgery, Division of Trauma and Critical Care, ²Driskill Graduate Program in Life Sciences

INTRODUCTION

