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Revealing gait as a murine biomarker of injury, disease, and age with multivariate statistics and machine learning
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* 15% of people experience a gait abnormality by the age of 60 (1). That number ¢ Collected DigiGait data of three different gait deviations (Fig 1). NI B = o4 +
increases to over 80% over the age of 85. * Multivariate factor analysis (using MATLAB’s factoran) and forward 7 o2
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* Rodent models are the most prevalent pre-clinical model for evaluating gait. feature selection (with ten-fold cross-validation) was conducted to R K 7
* Hundreds of rodent gait studies rely on univariate analyses of treadmill data. identify those features and factors most descriptive of each gait state. | o2 : .
* Systems like DigiGait generate multidimensional data (30+ measures). * Five machine learning classifier models were trained with ten-fold cross- | oo ) IO : o o o
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* Traditional approaches compare individual gait parameters in 1solation, offering validation and evaluated (e.g. random forest, regression, discriminant za?;:t;mpfr:*ﬁumzm;:.hw;< o e e R 0 e e s e b || g 6 Box and whisker comparisons of ach cental disease stae to conrol gait via multivarite scoring

rmddl fth pl f p appears to resemble characteristics of its individual components (IUGR, Hyperoxia).

limited insight into how features interrelate in distinct gait phenotypes. analysis, support vector machine, and ensemble) in a 70-30 training-

e Our lab recently developed a multivariate, machine learning-based statistical testing split for their accuracy, precision, recall, and F-score. oo mm—— ), T

analysis pipeline that can characterize, quantify, and distinguish gaits. * The highest performing model was used to score each type of gait. ) ) -
* The question stands 1f the developed pipeline may apply more generally to other ¢ The score distributions were plotted on a histogram for direct . + : . : I e

etiologies of gait deficit including central nerve injury or normal aging? comparisons of score populations between various gait states. . B A N ) I
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« Multivariate gait analysis will reveal biologically consistent relationships. scoction was conducted. on] | e —— . . P ——
* There are latent factors that help intuitively understand gait. of misclasstiation emor & %9 | Gl i e il ““ e T, Fis & Randomly chosanconiol arimls hvesatisical ndisingushai ]
» Not all measurable features are relevant for characterizing gait, there is a subset |mmt menvamad. =~ e e : , _ _
» Using this subset to train models will be more accurate than using all features | o mow fsanes docs R | | m m m 1554 35%&?:':3“9 ) me Costiciont
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* These models will be able to distinguish between different gait phenotypes, like Lt : S —— ¢ it L o || - FIFFF e
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0.14 0.16 S ey Latent Mf gM :;h t describe gait in the setting of central nerve injury Fig 9. The multivariate pipeline can statistically distinguish gait-related changes due to age with more moderate
[] ° Relationship of stride | Stride lengthand its Measures of the paw Phases of the stride significance (p = 0.002). Performance metrics are in the 0.75 range (i.e. 50% better than a coin toss). . y
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Al Gor oo R esiow e ° Us in the ide ntified fe ature S Various mo del S Were trained- Fig 11. Multivariate gait scores are a biomarker of disease states. (Left) strong separation between healthy (1) and diseased
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All Central vs. Control 1.0000  1.0000 1.0000 1.0000
(2-4) states. (Right) physiologically consistent separation among disease states. Hyperoxia (2) and the combined state (3) are

L] L] L] [
on DigiGait (Fig 1).
IUGR vs. Control
0.8848) 0.9000 1.0000 0.8474 closer to each other. IUGR on its own has less severe impact. This same trend was seen in the white matter volume data as well
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Etiology Group 1 Group 2 Group 3 Group 4 — e .“J::"’:“’.‘J::"‘i’i;“:'::"”“ coste] “osra somel oser with similarly high precision, recall, and F-score (Table 3).

evv Linear (Palldum) v Linear (Midbrain) Hyperoxia vs. IUGR 0.8667  0.9722 08750 0.9211

N — s s o ey e wese @ NOTEOVET, these classifiers were able to distinguish between the varying etiologies of gait with almost 90%
anury v:.% ’—_:‘2";‘:;;‘3-. Random Control vs. Random Control 0:5093 0:4643 0:5652 0:5098 : 5 . . 1

”‘\ e s e s e accuracy and statistical significance (Table 3, Fig 5-9).
Central nerve Control Hyperoxia tUGR B - e e Plotting multivariate gait score distributions revealed statistically significant score separation between types of
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e peripheral nerve mjury, central nerve mjury, and even in the course of normal aging (Fig 5-9).
* Changes 1n uni- and multivariate gait scores tracked with degree of white matter loss (Fig 3, 10, and 11).
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