

Peptide-Conjugated Coatings Enhances Mitochondria Transplantation to Damaged Endothelium <u>Brandon Applewhite¹</u>, Natalia Matiuto², Aurea del Carmen², Kaijie Zhang², Bowen Wang², Bin Jiang^{1,2} ¹Center for Advanced Engineering, Department of Biomedical Engineering, Northwestern University, Evanston, IL; ²Department of Surgery, Northwestern University Feinberg School of Medicine,

Introduction

Background: Mitochondria transplantation has emerged as a promising regenerative therapy for cardiovascular disease[1], but suffer from a lack of specificity, limited uptake, uncontrolled biodistribution, and subpar efficiency[2]. To overcome this, we are developing engineered mitochondria particles using phospholipid-peptide polymer conjugates to target mitochondria to the damaged endothelium

Healthy Mitochondria

<u>Goal</u>: Develop an endothelium-specific coating for targeted mitochondria transplantation

<u>Hypothesis</u>: Coating isolated mitochondria with collagen binding peptide (CBP) or VCAM-1 binding peptide (VBP) enhances uptake by endothelial cells JC-1 staining of DHAECs after 24 hrs of Mt treatment

Methods

- Mitotracker Red-labelled mitochondria (Mt) were isolated from induced pluripotent stem cell-derived mesenchymal stem cells (IPSC-MSCs) obtained from a young, healthy donor
- Mt were coated with biotinylated peptide-PEG-DSPE conjugates at a 1:1 ratio of polymer to mitochondria mass. Either collagen binding peptide (CBP) or VCAM-1 Binding Peptide (VBP) was used.
- Diabetic human aortic endothelial cells (DHAECs) were treated with mitochondria for 24 hours to measure uptake and downstream effects on

Chicago, IL

Characterization of DSPE-PEG Engineered Mitochondria

DSPE-PEG Functionalization Enhances Uptake

Uptake of Isolated Mt into DHAECs after 24 hours

Untreated

Results

DSPE-PEG Mitochondria Restore Polarization in DHAECs

Uncoated

JC-1 Staining of DHAEC 24 hours after treatment with mitochondria

DSPE-PEG-VBP Mitochondria Increase Mitochondria Mass and **Sustains Improved Respiration**

Untreated

Funding and Acknowledgements

This work was funded by the NHLBI 1R56HL169891-01, the Bachman Family Foundation, and the NUCATS NUCATS-E-TRAIN T32 fellowship. Super resolution spinning disk microscopy was performed on a Nikon SoRa system at the Northwestern University Center for Advanced Microscopy, purchased through the support of NIH 1S10OD032270-01. Illustrations were made with Biorender.com

Results

Uncoated

DSPE-PEG-VBP

Northwestern

CENTER FOR ADVANCED REGENERATIVE ENGINEERING

Future Directions (In Vivo Studies)

Systemic Delivery for AAA (BAPN Elastase Model)

Perioperative Local Delivery (Balloon Injury Model)

References

Masuzawa, A., et al., Transplantation of autologously derived mitochondria protects the heart from ischemiareperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology, 2013. 304(7): p. H966-H982. 2. Huang, T., T. Zhang, and J. Gao, *Targeted mitochondrial delivery: A therapeutic new era for disease treatment.* Journal of Controlled Release, 2022. 343: p. 89-106.