Enhancing Diaphragm Muscle Reinnervation Through Therapeutic Electrical Stimulation Following Spinal Accessory to Phrenic Nerve Transfer, Contrasting with Phrenic Direct Repair in a Rat Model

Hongkai Wang1,2,4, Jong Uk Kim3,4, Minho Seong5, Jordan Walters1, John A. Rogers1,4,6,7,8,9, Collin K. Franz1,10, Sumanas W. Jordan5

1Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation, Northwestern University Interdepartmental Neuroscience Program, Center for Bio-Magnetically Enabled Oxynation, Taper Institute for Biostatistics, Department of Materials Science and Engineering, Division of Plastic and Reconstructive Surgery, Biologics, Shirley Ryan AbilityLab, Department of Biomedical Engineering, Department of Neurological Surgery, Department of Chemistry, Department of Electrical and Computer Engineering, The Ken and Ruth David Department of Neurology, Northwestern University Feinberg School of Medicine

INTRODUCTION

Diaphragm, functions as a breathing muscle, is the most used skeletal muscle though the entire human life, working periodically and nerve fail asleep. Diaphragmatic paralysis, causing shortness of breath, recurrent pneumonia, anxiety, insomnia, morning headache, excessive daytime somnolence, orthopnea, and fatigue. Diaphragmatic paralysis can either due to phrenic nerve palsy, impairing the or spinal cord injury (C3-C5), impairing the neuronal soma body. Natural recovery of phrenic nerve injury not only takes a year but still leaves two thirds of patients with unsatisfactory diaphragmatic function. Let alone, high spinal cord injury impairing the soma mostly like stays as permanent. Our study aims to restore diaphragm muscle function through spinal accessory nerve to phrenic nerve transfer. The spinal accessory nuclei rely from C1 to C4, less likely injured than the phrenic nuclei. Additionally, we investigate the potential of therapeutic electrical stimulation (20 Hz, 1 h/1 h) to expedite diaphragm muscle reinnervation and functional recovery.

METHODS AND MATERIALS

Electrical stimulation on phrenic nerve did not facilitate functional recovery. Bilateral diaphragm excursion was measured weekly. Week -1 was pre-injury measurement. Upper Left: N mode ultrasound. Representative traces of diaphragm excursion. Lower Left: Quantification of diaphragm excursion. Purple: phrenic nerve transaction followed by direct repair and subsequent one hour 20 Hz electrical stimulation. Black: phrenic nerve transaction followed by direct repair only. N = 6. Mean ± SEM. Right: electrical stimulation did not induce upregulation of phosphorylated CREB in rat phrenic neuronal nuclei.

Electrical stimulation on spinal accessory nerve following nerve transfer facilitate diaphragm functional recovery. Quantification of diaphragm excursion. Adjusted diaphragm excursion is calculated by the excursion on the injured side/ intact side. Orange: group of rats with SAN to PNN transfer and subsequent one hour 20 Hz electrical stimulation. Black: group of rats with SAN to PNN transfer only. N = 5. Mean ± SEM.

RESULTS

Diaphragm, functions as a breathing muscle, is the most used skeletal muscle though the entire human life, working periodically and nerve fail asleep. Diaphragmatic paralysis, causing shortness of breath, recurrent pneumonia, anxiety, insomnia, morning headache, excessive daytime somnolence, orthopnea, and fatigue. Diaphragmatic paralysis can either due to phrenic nerve palsy, impairing the or spinal cord injury (C3-C5), impairing the neuronal soma body. Natural recovery of phrenic nerve injury not only takes a year but still leaves two thirds of patients with unsatisfactory diaphragmatic function. Let alone, high spinal cord injury impairing the soma mostly like stays as permanent. Our study aims to restore diaphragm muscle function through spinal accessory nerve to phrenic nerve transfer. The spinal accessory nuclei rely from C1 to C4, less likely injured than the phrenic nuclei. Additionally, we investigate the potential of therapeutic electrical stimulation (20 Hz, 1 h/1 h) to expedite diaphragm muscle reinnervation and functional recovery.

Phrenic nerve transaction model followed by surgical repair and electrical stimulation. (A) Ventral view of the neck in the supine position. (B) Incision to expose sternothyroid muscle. (C) Dissecting through the omohyoid and the sternocleidomastoid muscles. (D) Phrenic nerve (arrow). (E) Diaphragmatic electromyographic. (F) Direct repair followed by 20 Hz 1 hour wired electrical stimulation. (G) Closure of incision with buried sutures.

Spinal accessory to phrenic nerve transfer and electrical stimulation. (A) image showing the ventral view of the neck in the supine position. (B, C) Dissecting through the potential space between scalene muscles. Black arrows, phrenic nerve. Green arrow, distal end of phrenic nerve. (D) transected phrenic nerve. (E) Dissecting spinal accessory nerve and transecting at muscle innervation point. Black arrows, spinal accessory nerve. SAN, sternocleidomastoid. (F) rerouting spinal accessory nerve beneath omohyoid to reach phrenic nerve. Blue arrow, proximal end of the proximal end of the spinal accessory nerve. (G) electrical stimulation on the spinal accessory nerve.

CONCLUSION

Spinal accessory nerve transfer is a promising option to re-innervate diaphragm and restore spontaneous synchronized respiratory movement. Brief therapeutic electrical stimulation selectively improves regeneration of spinal accessory axons, but not phrenic axons, for functional restoration of the paralyzed diaphragm.

The device implanted on an intact phrenic nerve generated ipsilateral diaphragmatic excursion. Upper: Diaphragm excursion at 10 Hz by 10 Hz electrical stimulation. Middle: Diaphragm excursion at 20 Hz by 20 Hz electrical stimulation. Lower: full range diaphragmatic excursion by 50 Hz electrical stimulation. Images were taken right after device implantation surgery. Yellow line: electrical stimulation was on. Rats had intact innervatory diaphragmatic excursion. Recording time was 8 seconds in total under M mode ultrasound.

Electrical stimulation made spinal accessory reinnervated hemidiaphragm firing more similar and synchronized to intact hemidiaphragm. (A) diagram of multichannel recording of involuntary respiratory EMG on both sides of the hemidiaphragm (B) representative EMG traces. Recording time 18 seconds. (C) quantitative synchronization rate between left and right hemidiaphragm. N = 175 or 155. (D) quantitative firing duration difference between left and right hemidiaphragm. N = 175 or 155.