Hypothesis

β2-adrenergic receptor agonists will promote contractile smooth muscle cell phenotype and function.

Goal: Characterize the effect of β2-adrenergic signaling on receptor expression and smooth muscle phenotype in human aortic tissue.

Introduction

• Aortic calcification is a significant pathological process that resembles bone formation.
• During calcification, aortic smooth muscle cells switch from a contractile phenotype to an osteo-chondrogenic (bone-like) phenotype. [1]
• The sympathetic nervous system influences bone remodeling via β2-adrenergic receptors (β2-ARs), which play a critical role in regulating valve calcification. [2]
• However, the impact of β2-adrenergic signaling on vascular calcification remains relatively unexplored.

Methods

Samples of abdominal aortic wall segments show differential expression of β2-adrenergic receptors between patients with abdominal aortic aneurysms.

Results

Osteogenic differentiation of human aortic smooth muscle cells downregulates β2-adrenergic receptor expression. Stimulation of osteogenic smooth muscle cells with a β2 agonist, salmeterol, further downregulates receptor expression.

Delivery of β2 agonist salmeterol to human aortic smooth muscle cells cultured in both growth media and osteogenic media showed no significant difference in metabolic activities after 21 days.

Osteogenic cells treated with salmeterol demonstrate less alkaline phosphatase activity at day 21.

Culturing human aortic smooth muscle cells (hAoSMCs) in osteogenic (OST) media for 21 days successfully induced an osteogenic phenotype as evidenced by increased alkaline phosphate (ALP) activity over time.

Future Directions

• Compare expression of β2-adrenergic receptors and osteogenic markers in human cell studies.
• Elucidate the mechanistic pathway and inhibition is acting upon.

References


Acknowledgements & Funding

• We are thankful for Dr. Mark Eskinazi and the Division of Vascular Surgery at Northwestern Memorial Hospital for the collection of patient tissue samples.
• Taylor Brown, Brandon Applewhite, Nihal John, Sara Aharti and Caitlyn Dang for technical assistance.

Funded by the Northwestern William H. Pearce Vascular Surgery Student Award.