Mitochondrial transplantation as a therapeutic strategy to attenuate diabetic endothelial dysfunction

Natalia Matiuto, BS1, Bin Jiang, PhD1,2
1Department of Surgery, Feinberg School of Medicine, Chicago, IL, USA
2Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA

Introduction

- Diabetic endothelial dysfunction is driven by mitochondrial dysfunction and leads to macro- and microvascular complications, such as atherosclerosis and impaired wound healing.
- Mitochondrial transplantation is a promising strategy to enhance mitochondrial functionality in diabetic endothelium cells and restore damaged tissues.

Hypothesis: Mitochondrial transplantation to diabetic endothelial cells restores endothelial function via alleviating mitochondrial dysfunction induced in diabetes.

Methods

1. Mitochondria Cyto-Tracer transduction optimization and selection of iPSC-MSC
 - 1 ug of mitochondrial protein per 5,000 DHAEC

2. Coculturing iPSC-MSCs with DHAECs
 - Immunostaining was performed using CD-31 antibody
 - Flow cytometry was performed using conjugated CD-31-APC antibody

3. Establishment of mitochondrial dysfunction in DHAECs
 - DHAECs were conditioned in the EGM-2 supplemented according to the table for 5 days.
 - Control (no changes)

Optimal MOI was identified as MOI=30 yielding in 93±2.96% transduction efficiency.

Results

- Flow cytometry demonstrated mitochondrial transplantation efficiency up to 30.03% that increased with increasing ratio of MSCs to DHAECs.

Conclusions

- iPSC-MSC Mito-GFP transduction conditions were optimized at MOI=30.
- Mitochondrial transfer from iPSC-MSC to DHAEC and autologous mitochondria transplantation were validated and transfer conditions were optimized.
- Diabetic environment stimulation led to endothelial and mitochondrial dysfunction in DHAEC.
- Mitochondria fate in recipient cells, post-translation functional improvements, and exact mechanism underlying those will be studied in future work.

Acknowledgements

This work was funded by the NHLBI 1R01HL159891-01. Special thanks to the Northwestern Analytical BioNanoTechnology Equipment for the use of Cytoplan III Plate Reader, Flow and BBM Flow Cytometry for the use of flow cytometry machines, and Center for Advanced Microscopy for the use of Nikon Softi.

References