Mg53 Mitigates Acute Kidney Injury in a Large Animal Model of Isolated Traumatic Brain Injury

Marjorie R. Liggett, MD1, Guang Jin, MD PhD2, Jessie W Ho, MD1, Zaida S. Dawood, MD1, Mengxue Zhang, MD, PhD2; Baoling Liu, MD1, Aleezeh Shaikh, BA1, Daniel C. Coughenour, MD1, Kiril Chtraklin, DVM1, Bowen Wang PhD3, and Hasan B. Alam, MD1*

1Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; 2 Department of Pathology, University of Chicago, Chicago, IL

Introduction

TBI has important effects on distant organ injury. Clinical data suggest severe AKI + TBI have important morbidity implications (both in children and adults).

Research Objectives

Aim 1: Identify the impact of TBI on kidney injury in a realistic swine model of isolated TBI.

Aim 2: Can treatment with Mg53 attenuate TBI induced acute kidney injury?

Methods

- Yorkshire swine, 40-45kg (n=5/group), anesthetized and instrumented.
- Injury:12mm diameter controlled cortical impact.
- Treatment: Mg53 (2mg/kg) or Saline Vehicle was given immediately after TBI.
- Plasma and serum collected at baseline, 2h, 4h and 6 h post injury.
- Statistical Analysis: all values reported as averages ± SD, unpaired student T-test, used to determine statistical significance (p<0.05) between two groups.

Results

Figure 1: Representative image of kidney samples of swine euthanized 6 hours following sham control (A), isolated TBI (B), or post-TBI treatment with Mg53 (C). Animals who had undergone isolated TBI were found to have evidence of proximal tubular damage as highlighted in yellow (B).

Figure 2: Isolated TBI causes acute elevation in creatinine, which is mitigated by treatment with Mg53. Isolated TBI results in a significant increase in serum creatinine in as little as 6 hours after injury (**, p=0.0018 between baseline and 6 h post injury). In animals with TBI treated with mg53, there was no significant increase in creatinine. Creatinine in the TBI alone group was significantly higher at 6 h compared to animals treated with mg53 (+, p=0.012). Cr= creatinine

Figure 3: Serum NGAL significantly increases after TBI starting at 4 hours after injury, which is mitigated by Mg53. Serum Neutrophil Gelatinase-Associated Lipocalin (NGAL) was tested using ELSA with pig specific antibody. In the TBI control group, NGAL increased from baseline starting at 4 hours after injury (**, p=0.0014) and continued to increase 6 hours after injury (**, p=0.0002). NGAL did not increase significantly from baseline in the TBI+Mg53 group at 4 hours or 6 hours post injury. NGAL was significantly higher at 6 hours post injury in the TBI control compared to TBI+Mg53 group (#, p=0.0419).

Figure 4: TIPM-1 levels significantly increase in a mouse model of isolated TBI. Plasma from mice subjected to isolated TBI collected 24 hours post injury were compared to plasma from non-injured mice. Using Luminex immunoassay, levels of TIPM-1, a marker of acute kidney injury, was compared to TIPM-1 levels significantly increased in the TBI group (n=4) compared to controls (n=4) (p=0.0057). WT= wildtype

Figure 5: Histologic analysis of swine kidney shows amelioration of TBI-induced proximal tubular epithelial damage with post-TBI treatment of Mg53. Representative image of Periodic Acid-Schiff (PAS) stained kidney samples of swine euthanized 6 hours following sham control (A), isolated TBI (B), or post-TBI treatment with Mg53 (C). Animals who had undergone isolated TBI were found to have evidence of proximal tubular damage as highlighted in yellow (B).

Summary

- Evidence of acute kidney injury can be observed in two different animal models of isolated TBI.
- Isolated TBI leads to acute kidney injury that is evident as soon as 4-hours post injury.
- Treatment with Mg53 is both neuroprotective and kidney protective, though this protective mechanism remains unknown.

Conclusions

- TBI has important effects on distant organ injury.
- Understanding the mechanism of TBI-induced organ injury using a clinically relevant large animal model has the potential to influence a variety of clinical scenarios from transplantation medicine to trauma care.
- Disrupting the Neuro-Endothelial axis could mitigate the impact of TBI induced distant multi-organ damage.

Funding

US Department of Defense under contract no. MT17008.034, award: W81XWH-15-1-001 to HBA.

MRL supported by the Vascular Surgery NIH T32 Training Grant