Background: Healthy arteries are innervated by the sympathetic nervous system to not only regulate vascular smooth muscle cell (VSMC) contractility and tension, but also to regulate arterial maturation and structure. [1] Tissue innervation is a critical component for successful regeneration in any transplanted tissue. [2] However, little is known regarding vascular remodeling due to sympathetic nerve degeneration or injury. One potential consequence of sympathetic denervation is VSMC transdifferentiation. VSMCs can switch from a contractile phenotype to a synthetic (proliferative) [3] or osteo-chondrogenic (bone-like) [4] phenotype. Proliferation and migration can thicken the vessel and restrict blood flow, while osteogenic cells can deposit hydroxyapatite crystals into the artery wall.

Hypothesis: Denervation of arteries will initiate a sequence of events that will lead to the phenotypic changes of VSMC and vascular remodeling.

Goal: Elucidate the relationship between sympathetic innervation and vascular pathogenesis by creating a novel mouse model of arterial denervation.

Methods

Animals*: Male BALB/c mice

Procedures:
A) Femoral artery surgically exposed for direct application of neurotoxin 6-OHDA (6-OHDA) or buffer control
B) 6-OHDA subcutaneously injected on a weekly basis in region of femoral artery for four weeks with buffer injection as control

Results

1. Sympathetic denervation of murine femoral arteries can be achieved by direct application of 6-OHDA after open surgery. However, the effect is reversed at two and four weeks after one-time direct application of 6-OHDA, possibly due to nerve regeneration.

2. One-time direct application of 6-OHDA is insufficient to cause remodeling of arterial ECM.

3. Weekly injection of 6-OHDA leads to sustained denervation and lower blood perfusion at low temperature.

Discussion

Denervation
- Spontaneous sympathetic nerve reappearance at two weeks in otherwise healthy mice is a good sign that nerves can grow back toward arteries when the artery itself stays intact
- Nerve reappearance at two weeks in this model shows that this timeline is possible for regeneration, so future attempts at regeneration can be compared against this
- There are natural mechanisms for nerve regeneration we could seek to replicate for therapies
- Injection is a much more efficient method that allows for repeat administration, and does not affect the control limb
- Histology after four weeks of repeated injections demonstrates denervation of the treated limb and not the control

Remodeling
- Arterial denervation causes changes in hemodynamics in response to temperature changes, though the specific mechanisms remain unclear
- Other systemic processes such as cardiac output could be influencing the hemodynamics independent from vasconstriction

Future Directions

Experiments
- Combine denervation with models of endothelial injury or peripheral arterial disease
- Transdifferentiation protein analysis

Acknowledgements & Funding
Northwestern GoKidney Core for the use of the Laser Doppler Imaging system. Funding from Center for Advanced Regenerative Engineering RE-Training Program: NIH T32-EB031527

References