Use-Mediated Thermogenic Properties of Cast Saw Blades

Ian P. Erkkila1,*, Annemarie K. Leonard1,*, Jill E. Larson, MD1
1Ann and Robert H. Lurie Children’s Hospital, Northwestern University, Chicago, IL
*Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois

Abstract

Objective: Cast saw burns (CSBs) are costly, avoidable iatrogenic injuries with a multitude of modifiable risk factors, including the use of old cast saw blades in cast removal. The blade characteristics responsible for contributing to increased CSB risk are not well described in literature. This study aimed to characterize the use-mediated thermogenic properties of cast saw blades to determine when a blade becomes unsafe for use.

Methods: Stryker saw blades with a variable amount of wear were used with a Stryker vacuum cast saw by an experienced orthopedic surgeon to remove fiberglass casts. Blade temperature was recorded both before and after 5 passes and after 10 passes with a K-type Proster thermocouple.

Results: Preliminary data demonstrates a linear, positive correlation between blade wear, defined by its dullness and dullness, and increase in blade temperature after 10 passes.

Methods

A cast mold was created by wrapping a cylindrical pool noodle with 4 layers of websit and 6 layers of fiberglass casting material dipped in cool water. Water temperature was monitored to ensure it stayed within 1°C for all created molds.

The fiberglass cast was given sufficient time to dry (>8 min).

Stryker saw blades with variable amounts of wear were photographed and assessed using 3 metrics:

- Debris level (%): No. of teeth gaps with debris > 53
- Blade dullness (%): No. of dulled or debris-obliterated teeth > 54
- Blade Degradation Index (BDI): No. of teeth gaps with debris > No. of dulled or debris-obliterated teeth > 107

Each blade was used to remove the fiberglass cast with a Stryker vacuum cast saw (Model 93040) via the in-and-out technique by an experienced orthopedic surgeon.

Blade temperature was recorded both before, after 5 passes, and after 10 passes with a K-type Proster thermocouple.

To replicate the ideal clinical practice as suggested by literature, the surgeon assessed the blade temperature by touch after 5 passes and, when warranted, paused to allow the blade to cool.

Results

Fig. 1: Cast removal technique

Fig. 2: Cast saw burn

Fig. 3: Saw blade wear analysis. Markings above the teeth are for saw teeth and below the blade are for teeth gaps. Each blade has 53 gaps and 54 teeth. Red = debris, yellow = dullness, green = no debris or dullness.

Analysis and Discussion

With the promising results of this preliminary study more blade trials are ongoing.

Debris level, which can be gauged by the naked eye, appears to be a reliable proxy for estimating saw blade wear.

Future plans include testing if removing debris mitigates blade temperature increase and validating our blade quality assessment in clinical practice.

References